
J .  Fluid Mech. (1987), vol. 185, p p .  323-351 

Pn’nted in Great Britain 

Stability of rigid motions and coating films in 
bicomponent flows of immiscible liquids 

By DANIEL D. JOSEPH AND LUIGI PREZIOSI 
Department of Aerospace Engineering and Mechanics, 107 Akeman Hall, University of 

Minnesota, 110 Union Street S.E., Minneapolis, MN 55455, USA 

(Received 25 June 1986 and in revised form 23 April 1987) 

We consider the problem of global stability of the rigid rotation of two fluids. The 
realized interfacial configurations minimize a potential. We derive the most general 
form of the potential in which the working of the contact line may be expressed as 
a potential. The resulting variational problem for the interfacial potential is solved 
when the contact-line conditions are prescribed and for coating flows in which the 
interface makes a tangent contact with the wetted rod. In the former case, good 
agreement with experiments is obtained except near lines of contact. This shows that 
a spinning rod interfacial tensiometer is viable. In the latter case of coating flow, we 
get good agreement with experiments when the effects of gravity are not too large. 
The problem of bifurcation of coating flow is discussed qualitatively and some 
experimental results are given. We show how bifurcating sequences fit well into our 
qualitative description of the solution which must minimize the interfacial potential 
as the angular velocity is increased. The last bifurcations lead to pendant drops on 
a rotating ‘ceiling’ under the influence of centripetal forces which replace gravity. 
The dynamics of rollers of oil in water, or part in water and part in air, are explained 
in terms of the wavelength dependence of rotating drops. 

1. Introduction. The problem of placements and the problem of shapes 
Flows of two fluids are important and interesting because they are commonplace, 

they lend themselves to technological applications and they introduce new 
phenomena without counterpart in the flow of one fluid. 

Many configurations of flow of two fluids are possible. We see layers, slugs, rollers, 
sheets, bubbles, drops and emulsions and foams (see Joseph, Nguyen, Beavers 1984, 
1986, hereinafter referred to as JNB). These structures are often topologically 
different from the rest configurations from which they arise. The evolution involves 
breakup of liquids, a process which is not included in the usual statements governing 
dynamics (say, the NavierStokes equations). In some approximate sense, the 
configurations and the flow of two fluids that are ultimately achieved in practice are 
controlled by the problem of placements and the problem of shapes. In the problem 
of placements, we must describe the massive transport required to position the two 
fluids in the places they ultimately occupy. This problem is controlled by fingering 
flows and breakup and frequently is such that the low-viscosity constituent is found 
in the regions of high shear. Some suggestive ideas about the sets of solutions of the 
problem of placements that may be realized in practice can be determined by 
arranging the liquids to minimize the dissipation. Actually different minimum 
problems can be imagined (see JNB) and probably none of them are precise 
statements of what dynamics will allow. It may in fact be more useful to express the 
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type of ‘minimization ’ achieved by the fluids in the anthropomorphic terms used by 
JNB : ‘High viscosity liquids hate to work. Low viscosity liquids are the victims of 
the laziness of high viscosity liquids because they are easy to push around’. 

The problem of shapes has to do with the geometric form of the interfaces between 
flowing fluids. This problem involves surface tension and other potential terms which 
enter into each problem. The problem of shapes for rigid rotations of two fluids was 
considered by Joseph et al. (1985, hereinafter referred to as JRRN). This paper 
extends and solves the problem of shapes posed by them. 

The problem of placements can be framed as a variational problem for 
configurations which minimize a dissipation. This variational problem is perhaps a 
suggestive but not exact statement of the placements allowed by dynamics. The 
problem of shapes can also be framed as a variational problem. In this problem we 
seek the shapes that minimize a potential energy. In general this variational problem 
is also merely suggestive but in some limits it is also exact. The problem of rigid 
rotations of two fluids without gravity is one of these special cases in which the shape 
of the interface may be determined by minimizing a potential. 

2. Energy theory of stability of rigid motions of two fluids with contact 
lines 

2.1.  Steady rigid rotation of two Jluids 
Rigid motions of a fluid are possible provided that the fluid rotates steadily about 

a fixed axis. Drops, bubbles, different types of fluids in all types of containers may 
rotate rigidly. Various kinds of perturbations of rigid motion are also of interest. 

A single liquid which fills a container rotating steadily around some fixed axis will 
eventually rotate with the container. But in the case of two fluids it is necessary to 
determine the places occupied by the two fluids and the shape of the interfaces. 

We shall consider the special case in which the two liquids occupy the region 

G = {x = ( r ,  8, x) I R, < r < R,, 0 < 8 < 27t, - A  < x < A}  

between two coaxial cylinders of radius R, and R, which rotate with a common 
angular velocity a. The reader will see that this special choice of domain is required 
for only some of our results. Liquid one is in GI and two is in G,, 
G, U G, = G. The interface between G, and G, is called C. It may be of disjoint parts. 
Jumps across C are designated by [ * ] = ( * ), - ( * ), . 

Candidates for rigid motions, with gravity neglected, are 

(uo,po) = (are,, &Q2r2 + c) . (2.1) 

The velocity is continuous across C no matter what C, and the excess stress vanishes. 
We call (2 .1)  a candidate because it need not satisfy the normal-stress condition 

bO] = -2HT on C, 

[ P o ]  = [p]4S22R2 + [c] 

where R is the value of r at a point on 2 and 2H is the sum of the principal curvatures. 
Expressions for 2H in cylindrical coordinates are given in JRRN. 

The dynamics1 effects of gravity are negligible whenever secondary motions 
induced by gravity are small. We may absorb gravity into 4 = p+pgr sin8 in the 
equation of motion. There will be no secondary motions if q5 is independent of 8. Of 
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course, p must then depend on 8, at least like sine. This is compatible with the 
normal stress condition 

- [$] + [PI gR sin 8 + [AS,,] + 2HT = 0 

if [$I = [po l ,  [#,,I = 0 and 

where F is a Froude number and d = is the mean value of R(8,z) = R(z). The 
effects of terrestrial gravity are dominated by centrifugal ‘gravity ’ when the Froude 
number is large. 

There is another situation in which the dynamical effects of gravity are negligible 
which is easiest to understand as the rigid motion of thin coating films of very viscous 
liquids. In this case it is p that is independent of 8 and secondary motions are 
suppressed by the fact that the force of gravity is not sufficient to make a thin viscous 
liquid flow. The criterion for this, derived for thin films rotating in air, is 

where Do is the maximum film thickness and u is kinematic viscosity of the 
liquid. 

We shall now proceed with g = 0. 

2.2. Disturbance equations 

Set 

I U = u,+ri, 

P = PO+$. 

p -+u^~Vuo+uo~Vri+ri.Vu^ = -V$+divS, (2.7) [: 1 Then 

where ri is solenoidal and satisfies the no-slip condition on the cylinder walls. A t  the 
interface C 

1 [ri] = 0, 
- @] n+ [Q .n = [pol n+ 2HTn. 

For any integrable function f which is equal to fl in G, and f, in G,, we define 

For any g defined on Z we define ,- 

(2.10) 

Since the total volume of each incompressible fluid is conserved, we deduce that 

(usn), = 0 .  (2.11) 

F(x( t ) ,  t )  = 0 ,  If C is given by 

(2.12) 
rn aF _-  - -+u.VF = 0 ,  
dt at 

then 
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where we have assumed that the normal component of the velocity dxldt of the 
surface Z and the particles of fluids on either side of Z are the same. In fact, the 
velocity u is continuous across Z. When F = r -  R(8, x, t ) ,  we get 

2.3. Energy equation for rigid motions of two $uids 
The disturbance equations given in $2.2 imply that 

d b  
-+B[ri] dt = (2-n(@o]+WT))z, 

(2.13) 

(2.14) 

where &[dl = g<paz> (2.15) 

is the energy and 9 [ a ]  = (2pD[d]:D[a]) (2.16) 

is the dissipation. Moreover, making use of the transport theorem for surface areas 
(see, for example, (96.11) in Joseph 1976), we may write 

<~.n(@ol+2~~)), = <u*n@ol)z- <uo.n(h-301+2~~))z 

+T --+ U 7dZ , (2.17) { dE' J1, - 1 
where IZJ is the area of Z, 7 is the outward normal to aZ, lying on Z, and U is the 
velocity of a point of the contact line ax. under certain circumstances, to be specified 
in 52.5, we can express (2.17) as the time derivative of some potential 8, that is, 

a 9  
(U^-n(~o]+2HT)>, = -- 

dt ' 
We may then write (2,14) as 

d 
-((8+8) = -9 
dt 

(2.18) 

(2.19) 

2.4. Assumptions about the interface Z 
We assume that the interface Z between the two fluids has a finite number of 
components ; each of them is represented locally by a finite number of equations r = 
R(8, x, T ) ,  where R is a continuously differentiable function, periodic in 8. These local 
charts also satisfy suitable continuity conditions at  common points. 

We also assume that the boundary aZ has measure zero in R3 as in the case 
of bubbles, drops and emulsions, or aZ has a finite number of components, say 
aZ = aZ, U aZ,, where 32, lies on the endwalls at  x = f A and can be represented by 
a graph r = R(8, k A ,  t )  and where aZ, lies on one of the cylinders and is composed 
of a finite number of contact lines, each of them with a graph of the form x = x(Ri, 
8, t ) ,  where i = 1 or 2. 

2.5. Reduction of the interface terms 
We proceed now to the terms on the right-hand side of (2.17). These were computed 
by JRRN for the periodic problem and by C. Guillopb & D. D. Joseph for this paper 
(cf. Guillop6 et a,?. (1987) for another application). We assume that ,Z is given by an 
equation r = R(8, x, t) for x,(B, t )  < x < A ,  0 < 8 < 2x. The function R is continuously 
differentiable and periodic in 8. Here aZc is given by the x = x(R,, 8,  t )  = x,(d,t) 
where x is continuously differentiable and periodic in 8 and aZ, is given by the curve 
r = R(0, A, t). 
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Since (u0.n)= = 0, we find that 

(~o.nbol), = < ~ O ~ ~ ~ ' ) ~ ~ l p l Q 2 ~  

I, = (uO-nR2)= = -a r ll(@ Re R3 dx dB 9 We define 

where u, = QRe,. Using Leibnitz's rule we find that 

and after integrating, using periodicity, find that I, = 0. 
The calculation of (u.n[p,]) ,  is similar. Since (u-n)= = 0, we have 

(U.nb0])= = 4a2[P] (u*nR2),. 

Then, using (2.13) and d 2  = RIVFldBdx, we get 

I, = (u.nR2)= = l1(@ Rt R3 dx do. 

Since d R4(8,x,t)dxd0 = u , - ~ ~ R 4 ( 0 , x l ( t 9 ) ) d e  0 

(2.20) 

(2.21) 

it follows now, from (2.21), that I, is the time derivative of some function and 

(2.22) 
(U'nbol ) ,  = ,Q%I d ((R3lvFI-,)=+f~=~$dz)}, 

where $ = +R:Xlr-Rtt-ee, i = 1,2,  

and t is the unit tangent vector to aZc. In  the expression for $ the sign is + (resp. 
- )  on the parts of aZc being on the right (resp. left) side of a component of fluid 
1. 

We turn next to the reduction of 

(2.23) 

using the formula 

derived in JRRN. We may integrate this expression. The second term leads to 

For the first term we use Leibnitz's rule 
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Collecting results from (2 .23) ,  (2.24) and (2 .25) ,  we find that 

We may re-express the second term on the right in terms of x ,  

(2.25) 

(2.26) 

(2.27) 

where JVFI = (1 + Ri/R2 + RZ): in the first term on the right of (2.26) and lVFl = 
(1  +xi/R;+x,2); in the second term, using (2.27).  

Finally the calculation of U.7 on Z implies that 

(2.28) 

Let a,, be the angle between the interface C and the endwalls and a, the angle 
between the interface Z and the cylinders'. Then 

cosa,, = nae, = -- 

cosa, = n . e ,  = - X r  
(2.29) 

After introducing (2 .29)  into (2.26) and (2.28) and collecting all the previous results, 
we find that 

2.6.  The interface potential 
In order to reduce the interface terms (2.30) to potential form we assume that 

r from the contact line to the axis of the cylinder. (At  two different points 
6, at which rl = r,, the contact angle will be the same.) 

distance A-x of the contact line to the end wall at x = A. 
The form of the functional dependence will be explicitly discussed in $2.10. 

such that 

(i) The contact angle at the interface on the endwalls depends only on the distance 
and 

(ii) The contact angle at  the interface on the cylinders depends only on the 

The assumptions (i) and (ii) imply the existence of two functions $A(R) and $,(x)  

(2.31) 
R cosaA(R) = $i (R)  j }  

Rl cos = +.',(x). 
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The reduction of (2.30) to a time derivative of a potential 8, using (2.31), is 
straightforward. We write 

where D/Dt = a/at+Qa/ae is a derivative following rigid motion. The notations in 
(2.32) are slightly misleading; the integration is to be carried out on each and every 
contact line. We may write (2.32) as 

where 

It now follows that S in (2.19) is given by 

(2.33) 

Finally we note that the working of the contact line cannot always be represented 
by a potential. The relation of the assumptions (i) and (ii) which lead to a potential 
and the classical ones in which contact angles or contact lines are fixed is obscure. We 
note, however, that these assumptions hold trivially for the case of a fixed line or a 
constant angle independent of position and, in general, whenever implicit relations 
of the form fl(a, R) = 0 or fz(a, x) = 0 are valid. 

2.7. Poincare"~ inequality and the energy inequality 

Let v belong to a space X of square integrable solenoidal vectors defined in G which 
vanish on the solid parts of the boundary of G, or are periodic in x, with period 2A, 
if the cylinders are infinitely long. Suppose further that the gradients of such 
functions are also square integrable in G where integration is in the sense (2.9). Such 
functions are said to lie in H'(G) and they are automatically continuous in 0, even 
across Z, [v] = 0. Each such v satisfies Korn's inequality 

(lVl2> G 2k ( l ~ [ v I l Z )  (2.34) 

for some positive constant k. Since 

2(Imvl12) = (lVVl2) + (Idiv vI2> 9 

and div v = 0, the constant k is Poincark's constant. 
Using (2.34) we may establish that 

B[v] 2 2i&[V], V V € X ,  (2.35) 

where (2.36) 

The inequality (2.35) holds for connected configurations as well as for bubbles, drop 
and emulsions. 
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It now follows from (2.35) and (2.11) that 

d 
dt 
- ( d + B )  < - 2 i 6  

2.8. Integrability of the energy 
Integrating (2.37) from t = 0 to t ,  we find that 

6(t) + B(t) = b(0) + B(0) - 9 ( ~ )  dT < b(0) + B(0) - 2 i  

It follows that b(7)dT < b ( 0 ) + 8 ( 0 ) - 8 ' ( t ) - B ( t ) .  

(2.37) 

(2.38) 

Let us suppose that B( .) is bounded below on the set of allowed interfaces. In  fact, 
if G is a bounded region, B ( - )  is bounded from below. In unbounded domains B(.)  
need not be bounded below. In a bounded domain we could centrifuge all the heavy 
fluid to the outer cylinder wall. I n  an unbounded domain we would centrifuge a 
certain amount of liquid of the inner rod before reaching some equilibrium in which 
the potential is bounded. 

If B( - ) is bounded below as a functional on the set of interfaces, d ( t )  and 9 ( t )  are 
integrable and 

lim [b(t) +B(t)]  < + 00 . 

We proved that & ( t )  tends to zero in the sense of integrability and we assume that 
b(00) = 0. 

2.9. Minimum of the potential 
Let us consider the limit configuration [b( a), B( a)] ; since 6( co) = 0, this is a rigid 
motion and 

P( 00) - 8(0) = b(0) - g(7) dT. (2.39) 

Clearly B decreases in every transformation for which the right-hand side of (2.39) 
is negative. We may find disturbances z l  a t  t = 0, for any C,, such that &(0)/9(0) is 
arbitrarily small. For these 

8(00)-8(0) < 0. (2.40) 

It follows that all configurations that give rise to B different than B( 00)  are unstable 
and that 

B(o0) = lim B(t) = minB[C] (2.41) 

b o o  

JOoo 

t++m ZEEY 

where Y is the set of allowable interfaces (see $2.4 and JRRN). 

which the normal-stress equation (2.2) holds ; 
Finally, we note that critical points of B corresponds to steady rigid motions for 

b 0 ] + 2 H T  = 0 ,  

and the boundary conditions (2.31) are Euler equations for the minimization 
problem defined by (2.41) subject to the constraints of constant volumes for the two 
liquids. 

We may state the results just proved as follows: assume that the contact-angle 
assumptions (i) and (ii) hold. Then (a)  rigid motions are almost stable in the sense 
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that the energy of disturbances is integrable on (0,m) and (b )  the stable 
configurations associated with rigid motion minimize B in 9. 

2.10. Relation between the contact line and the contact angle 
Assumptions (i) and (ii) are equivalent to assuming a functional relation in which the 
contact angle is determined by its position on the contact line. (We could also state 
equivalent conditions in which the contact line is determined by the angle : say, the 
contact line does not move.) Precisely, such a functional relation is a differentiable 
map B between the set V of contact lines and the set d of contact angles. For 
instance, in the case of endwall (x = f A), % is the space of 2x-periodic functions 
R = R(8),  which are continuously differentiable with values in [R,, $,] ; d is the space 
of 2x-periodic functions, which are continuous with values in [ - R,, R,], and 

V +  d 
R + RCOSaA 

contact line contact angle. 

9: 

The equation of Young and Dupd is given by 

S ( R )  = CR,  

where C( =cosa,) is a fixed constant in [-1,1]. Assumption (i) is equivalent to the 
more general equation S ( R ,  8) = g5rtn[R(8)], where is a given absolutely 
continuous function from [R,, R,] into (- R,, R,). 

The assumption that there is a functional relation between the contact line and the 
contact angle is not inconsistent with our observations about the relation between 
the angle and the position on silicone-oil rollers rotating in water on a Plexiglas rod 
(figure 13). The angle a,&) between the interface and the rod at the line of contact 
x = x is a monotonic function of x-xs  where xs is the static angle which is finally 
achieved after transients have decayed and the potential is minimized. The contact 
line moves about 1 cm in 3 days, so that the velocity of the contact line is negligible 
and the angle does not depend on the velocity. 

2.1 1. Spatially periodic connected interfaces 
In this section we shall assume that the interface is a graph 

T = R(8,x) ,  

periodic, with period 2x in 8, and period 2n/a = 2A4n x. We shall show that either 
R = d ,  where d is the mean radius of R or the minimizing solution touches the axis 
at r = 0. This means that we get periodic arrays of drops and bubbles which have 
contact lines on the inner rod or make tangent contact with the wetted rod. 

The analysis of stable configurations starts from the expression (2.33) for 9. It is 
assumed that there are no end plates and that R(8,x) 2 a,  with possibly flat tangents 
at  R = a. The contact-line potentials 9 and @ are put to zero. Then we may write 
(2.33) as 

B = ~ ~ ~ ~ [ R z + R ~ + R ' R ~ ] ~ - ~ ~ ] R ' R ( ) d 8 ~ ,  (2.42) 

where da = r I R ' d 8 d x .  (2.43) 

In the analysis that follows we shall work with a potential A, differing from B by 
terms that are independent of R. 
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3. Solutions of the minimum problem 
3.1. Mathernutical formulation of the minimum problem 

Joseph et al. (1985), showed that rigid motions of two liquids between concentric 
cylinders of radius R, and R, are stable to spatially periodic disturbances of arbitrary 
amplitude and that the stable interface r = R(8,x) minimizes the potential 

A = T(([R2+Ri+R2Rz]$)-Q[P]SZ2(([R2-d2]2)), (3.1) 

where T is the interfacial tension, [PI = p1-p2 where p1 is the density of the inner 
fluid, SZ is the angular velocity of the two fluids, d2 is the spatial average of R2 

where 

and 2n/a is the wavelength in the x-direction. When the heavy fluid is outside, 
Cp] < 0, A is minimized by R(8, x) = d whenever 

> 4.  
[ P I  Q2d3 J = - -  

T (3.3) 

If J < 4, the minimizing solution is not of constant radius. The volume constraint 
(3.2) eliminates solutions of constant radius other than d. When J = 0, the interface 
is a surface of constant mean curvature, spherical, independent of 8. We shall study 
the @independent solutions. 

We measure all lengths in units d, setting r = R(x)/d, where x and a are 
dimensionless. Then there is a new A which is the old one divided by Td and such 
that 

A = ((r[l+rzlt+~[r2-1l2)),  (3.4) 

where ((r2-1)) = 0. (3.5) 

We seek to minimize A among periodic functions r (x) ,  in the class C1(x) satisfying 
(3.5). To do this, we introduce a Lagrange multiplier h and seek the minimum of 
A + 2 4  (r2 - 1)) among periodic C'(x) functions r(x). The Euler equation for this 
problem is 

1 + r'2 - rr'r 
(1 + rr2)t 

+[$ l ( r2 -1 ) -h ] r  = 0 .  

We may find a first integral of (3.6) by following a change of variables first 
introduced by Beer (1869). Consider the interface curve formed in the intersection of 
the axisymmetric interface and a plane through the axis r = 0 of revolution. The 
coordinates in this plane are (x, r )  and the angle between the interface curve r = r (z )  
and x is $. We define 

v=cos$, o < v 2 < 1 .  (3.7) 
(1 - v2)i 

rr  = tan$ = -, 
V 

Then 

and 
dr' d tan$ 1 dv 

tan$ = --- 
dr dr v3 dr ' 

r" = - r f  = - 



Rigid motions and coating $films in bicomponent flows of immiscible liquids 333 

FIGURE 1. Solution (I) of unduloid type. 

FIGURE 2. Solution (11) of nodoid type. 

The Euler equation (3.6) becomes 

d 
-(rv)+&lr3-,ur = 0 ,  
dr 

where ,u = &l( 1 + A )  is as yet undetermined and 

(3.9) W ( T )  = - & J ~ r ~ + + r - - ,  B 
r 

where /3 is a constant of integration. 

(1 -v2)i/v and the volume constraint 
The solution (3.9) is to be associated with an interface profile satisfying r'= 

((r2- 1)) = 471 dr = 0. (3.10) 

We may find all the axisymmetric solutions of our problem w(r(z))  governed by 
(3.9). There are solutions (I) of unduloid type, v = cos$ (see figure l),  if 

for any r ,  0 G v(r) G 1 ,  (1) 

and solutions (11) of nodoid type (see figure 2) if 

there exists r" I v(TA) < 0 .  (11) 

The angle between the interface curve and the x-axis is $ and r' = tan$. An 
unduloid is a surface of constant mean curvature, J = 0, which is generated by the 
focus of a rolling ellipse. A nodoid is a surface of constant mean curvature, J = 0, 
which is generated by the focus of a rolling hyperbola. 
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3.2. Analysis of the minimum problem 

It is convenient to replace the parameters (p, P )  with (r,, r ,) ,  the minimum and 
maximum values of r ( x )  (see figures 1, 2). Since r’(rl) = r’(r,) = 0 we have v(rl) = 
w(r2) = 1 and, using (3.9), we find that 

$Jr,4-&ri+rt+p = 0 (i = 1,2) \ 

Moreover, since r’ = (1 - v2)i/w, 

(3.11) 

(3.12) 

The period of periodic solutions is given by 

Solutions (I) of the unduloid type have 0 < D < 1. The constraint from above leads 
us to 

for all r E [ r l , r Z ] .  When r = r ,  (3.13) reduces to 

(3.14) 

In the problem treated by JRRN the fluid is confined by cylinders of radius R, and 
R,. Hence rl > R,/d and r,  3 1, so that if 

4 
J f  [1+R,/dI2’ 

(3.15) 

then J satisfies (3.14). The largest possible J for a solution of unduloid type is 
obviously J = 4. When J > 4, the only solution of our minimum problem is the 
interface of constant radius r ( x )  = 1. 

The other condition v 2 0 for a solution of unduloid type leads us to  the 
ineaualitv 

Y 

8(r2 + r,  r , )  
(rl+r2) ( r i - r 2 )  ( 9 - r : ) ’  

J > -  

for all r E [rl, r , ] .  Let us choose r E [rl, r,] so as to make the 
as large as possible; i.e. 

(3.16) 

right-hand side of (3.16) 

(3.17) 
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Solutions of type (I) are possible only when J satisfies the inequalities (3.14) and 
(3.17). 

If J < -8, solutions of type (I) are not possible and we get solutions (11) of nodoid 
type. After introducing the new variables into (3.4) and ( 3 4 ,  we seek the minimum 
of 

subject to the volume constraint 

where 

(3.18) 

(3.19) 

(3.20) 

is positive, and r (8 )  is defined by 

r = +(rl + r,) + +(r2 - rl) sin 8. (3.21) 

The volume constraint gives r, as a function of rl, 0 < rl < 1. 
The form of the solution just given is new and is particularly convenient for 

numerical calculations. It is necessary to distinguish between constrained and 
unconstrained minima. In  the unconstrained problem we minimize Jl as rl varies. 
Numerical calculations of Preziosi (1986) show that these minimizers cross the axis 
with r'(0) = 00. Therefore, the unconstrained minimizers are either bubbles (J > 0) 
or drops (J < 0). The distance z ( T ) ,  (3.12), between the minimum radius rl and the 
radius T ( Z )  is now given by 

(3.22) 

where y = +,(l +sin 8) and # = arcsin [2r/r,- 11. The wavelength A is 2x(r,), where 
s(r2) is the distance between the maximum and minimum values of r .  When r = r,, 
4 = +x. Tables of values r,(J) and A(J) for unconstrained minimizers are given by 
Preziosi (1986). When J 2 4, the minimizing interface has constant radius. The 
period A(J)  of the minimizing solutions with J > 0 is monotonically from a sphere 
J = 0 to a cylinder J 2 4. When -5.42285 < J < 4 the solutions are of unduloid 
type. When -8.18834 < J < -5.42285, the minimizing solutions are of nodoid type 
(11). When J < -8.18834, there are no axisymmetric minimizers. 

Another form of the solution just given, in which it is implicitly assumed from the 
start that the minimizers cross the axis, can be found in Rosenthal's (1962) study of 
rotating bubbles and Chandrasekhar's (1965) study of rotating drops. These authors 
prescribe volume rather than the mean radius. The condition on non-existence of 
axisymmetric minimizing drops J < - 8.18834 was first given by Chandrasekhar who 
uses a drop parameter -#.Jr! = [PI Q2a8/8ST, where a is the maximum radius of the 
drop. He mentions the possibility of toroidal figures of equilibrium (see figure 3). 
These figures were first discussed by Rayleigh (1914) and studied extensively by Ross 
(1968). Toroidal figures of equilibrium at large negative values of J might be 
interpreted to mean that there are no locally stable flows with heavy fluid inside ; all 
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FIGURE 3. Schematic drawing of minimizing solutions. Minimizing solutions touch the axis with a 
perpendicular tangent. (a) Solutions of unduloid type are convex, 4 2 J 2 -5.42285. (b) 
Solutions of nodoid type have a point of inflexion - 5.42285 2 J 2 -8.18834. (c) Limiting 
(toroidal) form of the solution for J = -7.583908. 

of the heavy liquid has been centrifuged to the outer cylinder giving rise to robustly 
stable flows with J > 4. 

If we prescribe a contact angle 8 at  the rod a t  r = a, then (3.8) leads to 

r(w- 1) = ( r2 - r ) f ( r ,  8, r2,  a, J ) ,  (3.23) 

where 
r2 -a  cos 8 

ri - a2 

def 

f =&J(r2-a2)(r2+r) -  ( r 2 + r ) + 1  Q 0, (3.24) 

because r2 > r and v = cos $. Equation (3.23) is a first-order differential equation, 
cos $ = (r’2+ l)-i which is to be integrated from x = xl, where ( r ,  r’) = (a,  tan 8) to 
x = x2 where r’ = 0. f is a cubic in r and it has two points where af/ar = 0, one of which 
is negative. It follows that when a < r < r2, f is a decreasing function of r with a 
maximum at r = a, or f has a single minimum in a < r < r2 and f is a maximum a t  
the end points a or r2.  We can verify that f(a, 8, r2,  a, J )  < 0 automatically, and 
f ( r 2 ,  8, r2, a, J )  Q 0 if and only if 

(rg + a2 - 2r2 a cos 8) 
r2 (ri - a2)2 

J < 4  

For long bubbles, v - 1 N -&b2 and r2-r  N $l and f ( r ,  8, r2, a ,  J )  + 0 with $ implying 
the equality in (3.24) for long bubbles. We can compute surface tension T when the 
bubble is long and r2 and cos 8 are known. 

3.3. Periodic solutions, drops and bubbles 
Solutions that cross the axis may be regarded as limiting cases of periodic solutions. 
Then we get a periodic array of drops (J < 0) or bubbles (J  > 0) lined up with their 
centres on the axis of rotation. If we put a rod of radius a at the centre of the array, 
the resulting configuration would assume the form of an array of rollers. When the 
periodic solution is viewed as an array of drops or bubbles, r2 is one radius ofthe drop 
and ;A is the other. The sphere with r2 = (3/2)1 corresponds to a volume of 7c2/6, 
which is the volume of a right circular cylinder of unit radius and height 2r,. It is also 
of interest to briefly consider the mean curvature 

H(r)  = [w(r) r]’/2r = &T(ri- 2r2) + l /r2 
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FIQURE 4. Cylindrical interface between lo00 cSt silicone oil and water when J = 4.5. 
The radius of rod is 0.24 cm. 

at the equator r = 0, H ( 0 )  = $ i J +  l /r2,  or at the poles H ( r , )  = -&-iJ+ l/r, of the 
rotating drop or bubble. The curvature at the equator is negative when J < -8 /r :  
corresponding to solutions (11) of nodoid type. 

It is useful to distinguish bubbles and drops by a dynamic criterion. Bubbles will 
elongate along their central rotating axis as Q is increased. Drops contract under the 
same conditions. Using this criterion we suggest that the terminology oil ‘drops ’ 
rotating in water, as in Plateau (1863) and in the experiments described in $86.1 and 
6.2 is precise. 

In the case of bubbles J > 4 cannot be achieved because the bubbles will elongate 
as Q is increased in such a way that the effective mean radius, 

is a decreasing function of Q. In our experiments using end 
matching to achieve microgravity, we prevent elongation and 
radius R = d when J > 4, as in figure 4. 

plates and density 
achieve a constant 

Leslie (1985) has solved the priblem of rotating bubble shapes in a low-gravity 
environment. His drop can contact endwalls that are perpendicular to the axis of 
rotation. He applies the condition of constant contact angle (cf. 82.10) a t  the 
endwalls. He does not use density matching to achieve microgravity but instead does 
the experiment in a free-falling aircraft. 

The presence of a central rod alters the dynamics of bubbles and drops in certain 
ways which will be specified in due course. For now it will suffice to call the reader’s 
attention to figure 6 which shows small effects on bubbles, and to figures 7-10, which 
show large effects on ‘drops’ in air. 

3.4. All the solutions with J < 4 touch the cylinder 
Minimizing solutions that cross the axis of rotation will certainly touch the inner 
cylinder. The prediction that solutions with J <  4 will touch the cylinder is 
completely consistent with experiments. The cylinder-touching solutions that are 
observed are of two types: (i) the interface between the two fluids intersects the 
cylinder at lines of contact, as shown in figures 5, 6, and 13; and (ii) the interface 
between the two fluids makes a tangent contact with the wetted rod at r = a as 
shown in figures 7-1 1. The physical mechanisms embodied in the difference between 
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(i) and (ii) are associated with fundamental problems of adhesion and cohesion not 
considered here. 

The effects of capillarity at  lines of contact should be considered for solutions of 
type (i), as in (3.23) ; but if a/ra be small, the effects of capillarity at contact lines will 
then also be small. The comparison between theory and experiment shown in $5.1 
shows that contact-line effects are local even in cases when the interfacial tension is 
large; say when a is small compared with the bubble radius. In the other case (ii), 
with tangent contact, and no contact line, we acknowledge a constraint on our 
variational problem by looking for periodic solutions with troughs which touch the 
cylinder at r = a. This also works well (see figures 7-11). 

3.5. Critical remarks about stability theory 
The fact that realized solutions with J < 4 touch the cylinder is a motivation for 
remarks that are meant to be critical of current ideas about the study of stability of 
the flow of two fluids. When there is one fluid, there is a unique stable flow at low 
Reynolds numbers. When there are two fluids, there can be many configurations, 
even at zero Reynolds number. In the case of rigid motions, heavy fluid outside or 
inside and even nested sequences of drops and bubbles are possible. Different 
solutions can be realized in nature. So we have not got a unique solution to study but 
perhaps an infinity of such solutions (see JNB for examples). If we choose one of 
these and show instability, we eliminate one placement, but we have to study all the 
others. So with two fluids the identification of a basic flow and the study of its 
stability cannot be separated. 

As an example of the considerations just discussed we note that Yih (1960) studied 
the problem of stability of a film of liquid rotating in air. He treated this problem in 
the linearized approximation, and studied the stability of rigid motions with a free 
surface of constant radius with gravity neglected. Naturally these constant-radius 
interfaces are unstable because J is negative. Rigid motions, with negligible gravity, 
are stable and can be obtained easily in experiments (see SS5.3 and 5.4) but the free 
surface cannot have a constant radius. 

4. Experiments with heavy fluid outside - the spinning rod tensiometer 
The case J > 0 corresponds to centrifuging, with heavy fluid outside, and 0 < J < 

4 is the domain corresponding to rigid rotation of bubbles whose long dimension 
increases monotonically from that corresponding to a sphere at J = 0 to an infinitely 
long cylinder of ever smaller diameter as J + 4 .  Strictly speaking rigid rotation 
is possible only when the Froude-number criterion (2.4) is satisfied, 
Q2d 9 29. This criterion is independent of [PI. If [PI is small we may have 

for values of 52 such that gravity is negligible. 
The spinning rod tensiometer (US Patent 4644782) is a device for measuring 

interfacial tension between different liquids. This device competes with various 
spinning drop tensiometers (see Rosenthal 1962; Princen, Zia & Mason 1967). The 
rod and the drop tensiometers are designed to work under conditions of negligible 
gravity in which (2.4) and (4.1) hold simultaneously. 
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FIGURE 5. Array of bubbles of 95% silicone oil (12500 cSt) dyed with 5% castor oil (p  = 0.974, 
T = 20.5) in water. J = 1.87 for the central bubble and 0.05 for the small ones. The radius of the 
aluminium rod is 0.24 cm. 

(4 (4 
FIGURE 6. Numerical comparison. The dots are theory computed numerically (nee (3.22)) neglecting 
the contact-line potential. The rod radius is 0.24 cm. (a) Bubble of 95% silicone oil (12500 cSt) 
dyed with 5 YO castor oil (p = 0.974, T = 20.5) in water when J = 0.72. (b) Bubble of 95 % silicone 
oil (12500 cSt) dyed with 5% castor oil (p = 0.974, T = 20.5) in water whenJ = 1.87. (c) Bubble of 
silicone oil (1000 cSt, p = 0.967, T = 22.1) in water when J = 2. (d) Bubble of silicone oil (lo00 cSt, 
p = 0.967, T = 22.1) in water when J = 2 without inner rod. 
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The working formula f = 0 (3.24) for the spinning rod tensiometer may be replaced 
with the working formula J = 4 / 4  for the spinning drop tensiometer when 

1 r~+a2-2r2acos 0 22 cos e + x4 - 3x2de* 
= g(x, cos 0) < I ,  - 1  = -I r: ~ ~ ( 4 - a ~ ) ~  1 +x2 - 2x cos 0 

where x = u/r2, g(0, cos 0)  = g(x, $(3-x2)) = 0. We may ignore the rod when a is small, 
r2 is large or the contact angle at the rod is near to the angle on the bubble without 
the rod at  the same radius. 

The shape of rotating bubbles does not depend on whether a small rotating rod 
pierces the central axis of the bubble, except near lines of contact. This lack of 
sensitivity of shape on rod is partially controllable, the capillarity is reduced in small 
rods and may be reduced by using rods of different material and coated rods. 

The experimental apparatus used to obtain the results reported here is a 
cylindrical container of Plexiglas with inner radius 3.6 cm, of length 24.5 cm, closed 
at  each end. A rod may be inserted along the central axis. The rods are attached 
rigidly to the cylinder and all the parts rotate together as a rigid body. We used 
aluminium rods of radius 0.24 cm and 0.5 cm and a Plexiglas rod of radius 1.25 cm. 
A photograph of the cylindrical interface which appears whenever J > 4, shown as 
figure 4, will aid the reader in visualizing the cylinder apparatus. 

The liquids used in our experiments were water, Castor oil, Soybean oil and 20, 
lo00 and 12500 c.p. silicone oils. The densities of these liquids are 1, 0.960, 0.922, 
0.949, 0.967, 0.975 respectively. The small density difference greatly reduces 
perturbing effects due to gravity. The effects of gravity can be reduced to negligible 
levels with IJI < 4 when the density differences are < 0.1 and d < 1 cm, as in 
our experiments. If we suppose that Q2d = 2gk for k B 1, then (4.1) requires that 
[PI d22gk < 45". Under these conditions we always get centrifuged configuration 
with heavy fluid outside, Ip] < 0. 

Solutions of permanent form, periodic in 2, with heavy fluid outside (0 < J < 4), 
were never observed. Instead of periodic solutions we found isolated bubbles of light 
liquid centred on the rod. When J > 4 ,  we get a cylindrical interface which is 
modified by capillarity at  the endwalls. The effects of capillarity are smaller when 
5 - 4  > 0 is larger. When J is reduced from above to below 4, the interface deforms 
continuously until points at the interior touch the axis. At  this point we see some 
changes in the topology of the interface. The fluid may rupture into bubbles 
separated from the heavy liquid outside by well-defined contact lines. This depends 
on energetic considerations associated with the two fluids and the rods. The 
configuration of permanent form which we see most frequently when 0 < J < 4 is like 
that shown in figure 5 in which small bubbles and large bubbles both appear. 

We define d for an isolated bubble as the radius associated with a right circular 
cylinder of the same length and volume. It follows that there are different J values 
for small and large bubbles rotating with the same Q. This is why the small bubbles 
are almost spherical and the large ones are elongated. 

Agreement between theory and experiment is demonstrated in figure 6. The dots 
represent theory with capillarity neglected. The value of the interfacial tension may 
be selected to make theory and experiment agree for one value of 0. The same 
interfacial tension then gives agreement for other values of Q. In figure 6 (a, b) we can 
compare the agreement between theory and experiment for two different values of 
SZ, with one T. Figure 6 ( a s )  shows that capillarity is a small effect. This was true for 
all the cases we studied, even the worst-case situation, comparing a free bubble to a 
captured bubble, using the same interfacial tension, exhibited in figure 6(e, d) .  
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Very rapid measurements of surface tension may be obtained using elongated 
bubbles with aspect ratios greater than 6 by assuming that J = 4. More detailed 
comparison of theory with observed shapes leads to values of the interfacial tension 
T. 

Some of the advantages enjoyed by the spinning rod tensiometer over various 
spinning drop tensiometers currently used are (1) the rod captures the bubble, 
eliminating the position problem ; (2) the captured bubble is stable if small enough, 
eliminating the stability problem ; (3) the rod reduces the spin-up time from hours to 
minutes; and (4) the cylinder-plus-rod device is simple and cheap and has a potential 
for high precision. 

5. Experiments with heavy fluid inside - coating flows 
We did experiments with heavy fluid inside, ‘drop’ experiments, of a special kind, 

coating aluminium and Plexiglas rods rotating in air with oil. With air outside, 
[PI = p is not small and gravity can be important. The coating liquids used in our 
studies were STP, 1000 and 6000P silicone oils. The viscosity of STP is about 
1OOP. The dynamics that we have observed are not inconsistent with the 
observations of Moffatt (1977) of films of golden syrup (80 P) rotating in air. Our 
study complements Moffatt’s in carefully examining the axial structure of the 
rotating films as well as the azimuthal variations. We are interested in demonstrating 
that the shapes of the films are largely determined by minimizing the potential 
expressing energies associated with centripetal acceleration and surface tension, even 
when gravity is not negligible. 

The apparatus used in these experiments is nearly identical with that used in the 
experiments of Moffatt (1977). A layer of liquid was first coated on the cylinder by 
rotating it while partially immersed in a trough ; the roller was then raised from the 
trough while still rotating. The coating films achieved in this way could be 
maintained indefinitely. The films undergo many different transitions as flow 
parameters are changed. We used three different rods: two aluminium rods with 
radius and length 1.02,30 cm and 1.42,45 cm respectively and one Plexiglas rod with 
radius and length 2.04, 30 cm. The material and length of the rods is not important. 
The liquids coated the entire rod along its whole length. 

All the fluids mentioned in the last paragraph are sticky. Once the rod is coated 
with these fluids, it stays coated; dry patches do not develop. This means that 
contact-line conditions are inappropriate for such coating flows. We are then obliged 
to reconsider the implications of the fact that in unconstrained problems the 
minimizing solutions cross the axis when J < 4. In the case of sticky coats on rotating 
rods we have a constrained variational problem in which we require that if the 
interface touches the rod it will do so with a flat angle of contact at  touching points. 
In fact all the realized solutions touch the rod in just this way (see figures 7,9,10 and 

An oil which sticks on solids immersed in one fluid need not stick when immersed 
in another fluid. Silicone oil sticks to Plexiglas rods rotated in air, but not in water 
(see figures 12-14) even though silicone oil preferentially wets Plexiglas. 

Some gross features of rod-touching oil films rotating in air may be explained as 
follows. Uniform coats are unstable and undulations begin to develop along the rod. 
Moffatt (1977) gave a heuristic argument which explains why this instability should 
not equilibrate until the troughs of the wavy interface touch the cylinder. In this 

11). 
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argument we neglect surface tension and suppose that a liquid is rotating in air with 
p = pa or r = R(0, x ,  t ) .  Then 

p - p a  = $ ( r 2 - R 2 ) Q 2 ,  

and the pressure under any bump is less than the pressure a t  the side of the bump. 
In  the absence of countervailing forces the pressure deficit would exaggerate the 
bump, with largest pressure gradients along lines from the point a t  the base of the 
bump where p - p a  is minimum. This pressure gradient pulls in the sides of the bump, 
exaggerating bumpiness. This heuristic argument does not require axisymmetry ; it 
works as well for bumps as for rings. The same argument works without change 
whenever the heavy fluid is inside, [PI > 0. When the speeds are low, axisymmetric 
wavy solutions with troughs that touch the cylinder minimize the interface potential 
(see 85.2). It is nearly impossible to pass fluid from one wave to  another. Further 
increases in the angular velocity lead to  increases in the amplitude of the undulations 
and length of the troughs touching the cylinders. These features are evident in figures 
7-14 of this paper and figures 5 and 6 of Moffatt (1977). The undulations are then 
isolated from one another and it is not useful to think of periodic (in x )  solutions, 
however periodic they may appear to be. Periodicity can be more closely simulated 
when the viscosity of the coating fluid is smaller. I n  this case the transfer of fluid from 
one undulation to another, which is required to maintain periodicity against 
disturbances, is enhanced. It may be useful to think of the undulations as rotating 
drops constrained by tangent contact at the rod. From these explanations the reader 
should understand why long very thin films separate rotating drops making tangent 
contact, whether or not the array of drops appears to  be periodic. 

5.1. Effects of gravity 

The analysis of Moffatt (1977) and the analysis and experiments of Preziosi & Joseph 
(1988) show that the effects of gravity on coated rods rotating in air are small 
when 

where h, is the maximum value of the film thickness h(0 ,x ) .  We approach rigid 
motion when the film thickness is small and the viscosity is large. When Sht = 1, the 
rate of rotation of the rod is insufficient to maintain the load and some of the fluid 
will drop off the rod, as honey drops off a slowly rotating knife. At this critical 
condition the maximum surface velocity is approximately iQa (see Moffatt 1977, 
equation 13). The removal of fluid reduces h, so that gahi/vQ < 1. If we now increase 
a, and bifurcation does not occur, we may satisfy (5.1) with an axisymmetric 
figure. 

5.2. Computation of the interface shape of rigidly rotating coating flows making 
tangent contact at the rod 

We first determine d in the plane 0 = in. Given a, T, [PI, we may then compute J .  
We next seek that solution of our equation that makes a tangent contact a t  the rod, 
at rl = a / d .  With d and rl given, r2 is uniquely determined and (3.12) may be used 
to compute the shape of the free surface. This procedure produces good agreement 
with experiments (cf. figure 7 ,  and figure 4a ,  b in Preziosi & Joseph 1988). 

5.3. Bifurcation of coating films to non-axisymmetric shapes 

The problem of shapes of interfaces between fluids that rotate rigidly without shear, 
when gravity is neglected, is determined by a balance of the capillary force against 
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FIGURE 7. The rod is coated with STP and is rotating in air with J = -0.95, a / d  = 0.74 and Sh: 
= 0.57. The dots compare the observed shape with the axisymmetric drop that has a tangent 

contact at r = a. The shape of this axisymmetric figure is determined by the method of $5.2. 

(b) 

FIQURE 8. (a) Bifurcated non-axisymmetric solutions on rings of 6OOO P silicone oil in air on a 
2.04 cm rotating Plexiglas rod. (b) Instability of the bifurcated rings at a higher rotation rate. 
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pressure forces associated with centripetal accelerations. When there is no rotation, 
and no other constraints, surface tension will pull the interface into a sphere. 

The argument of $4 applies equally to axisymmetric shapes (rings) and non- 
axisymmetric ones (bumps). The stability of rings for small amplitudes and their loss 
of stability to non-axisymmetric shapes a t  large amplitudes can be argued from the 
form of the dimensionless potential. 

B = (( - 1)) + (([(1 + A)2 (1 +A:)  +A34) )  +&J(([2A + A2I2)),  (5.2) 

where (5.3) 

and R = d + S ; (8, x, 1 /a) are made dimensionless with d and A = S/d .  Since (( R2))  = 
( (d ’ ) )  we find that 

( ( 2 A + A 2 ) )  = 0 ,  (5.4) 

and the average deviation A = - 1 + R / d  from zero must be negative if the volume 
of the two fluids is preserved. The linearized form of (5.2) is 

The minimum value of (5.5) is taken for A ,  = 0 and very long waves, small 
wavenumbers a. Such disturbances are compatible with ( ( A ) )  = 0 and A ,  --f 0. Since 
A is periodic in 0, with period 25c, A ,  =!= 0 leads always to a fmite contribution to 4. 
If we suppose that the heavy fluid is inside, then J < 0 and if 52 is also large the 
second term in (5.2) decreases when ( ( [ 2 A + A z l 2 ) )  = ((A4+4A3-8A)) increases. For 
large lAl this term is dominated by A4. The largest values of Id( occur at  points at which 
R > d ,  A > 0, A ,  = 0, because, on the average (5.4) requires A < 0. Near these points 
we get larger values of (1 +LIZ)  (1 + As 52 increases the maximum values a t  which 
6 = R - d  > 0 get larger and A ,  grows near such points. When the positive of 6 are 
sufficiently large we pay a greater price by increasing A ,  than by increasing A,  values. 
Then bifurcation occurs. 

The argument just given shows that non-axisymmetric solutions will form on rings 
R - d > 0 of relatively short length. Such bifurcation on narrow rings can be seen in 
figure 8 and in figures 6(a) and 9(b) of Moffatt (1977). 

It is also obvious, from the way that the &variations appear in (5.10), that the first 
non-axisymmetric solution to bifurcate, as 52 is increased, will have a first-mode 
azimuthal periodicity corresponding to an eccentric ring. Write A ( z ,  0)  = Ao(x)  + A ’ ( x )  
cosn8 and linearize for small A’@).  Then, A; = n2f2(x)  sin2nB. This is smallest for 
n = 1. Repeated bifurcation of non-axisymmetric solutions leads to ever higher 
modes of azimuthal periodicity. 

The bifurcation of axisymmetric figures of equilibrium to first-mode, eccentric 
figures is a robust and possible generic phenomenon, readily observed on nearly every 
type of coating film, whether rotating in air or in water (see figures 9, 10 and 14(a)). 
The same type of fist-mode azimuthal periodicity was observed in the experiments 
of Plateau (1863, see his figure 4) as the first bifurcation of the olive-oil drop coating 
the rotating disk in an alcohol-water mixture. This type of instability does not make 
sense for free rotating drops since the central axis of a free drop is not fixed in 
space. 
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FIGURE 9. Silicone oil (6000 P) on a 1.02 cm radius aluminium rod rotating in air at 21.9 r.p.m. 
The lobes rotate much more slowly: left to right 15, 18.8 and 13.7 r.p.m. respectively. 

(4 (4 
FIGURE 10. The 6000 P silicone oil is thrown off radially. The effects ofgravity are negligible. The 
configuration is nearly steady in a rotating coordinate system. (a) SZ = 99.15 r.p.m., a = 1.02 cm ; 
(b) B = 31.76 r.p.m., a = 2.04 cm. The surface velocities of the three rings (b) from the left to right 
are 31.41, 31.57 and 31.63 r.p.m. respectively. 

Non-axisymmetric one-lobed shapes were analysed by Brown & Scriven (1980) for 
a drop captured between two rotating disks. These calculations showed that higher- 
lobed shapes between disks, like those reported by Plateau and here are indeed 
unstable. First-mode, eccentric figures, like the shape of drops rotating on a rod, can 
even be explained within the context of static figures. In his observations of static 
capillary bridges, Plateau observed such a bifurcation when the end plates confining 
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FIGURE 11. Pendant drops of 0000 P silicone oil in air on a rod of radius 2.04 cm. The motion is 
perfectly steady in a rotating coordinate system. Gravity is negligible. (a) SZ = 500r.p.m. 
( b )  1000 r.p.m. 

the neutrally buoyant fluid were brought sufficiently close to one another. This 
reduces the wavelength, as in the case of rotating drops, until the price paid by 
further decrease of the axial wavelength in minimizing the potential is greater than 
that for bifurcation into the first mode. Russo & Steen (1986) have recently analysed 
this bifurcation in the context of static figures. 

5.4. Intrinsically steady and unsteady coating j b w s  

Flows that are steady in laboratory coordinates can be achieved when Q is small. For 
larger values of Q, these flows are unsteady in every coordinate system. For very 
large values of Q, thin films rotate rigidly and are steady in a rotating coordinate 
system. 

It is impossible to maintain an interface of constant radius on a film of liquid 
coating a rod rotating in air. If the coat is thick gravity can be very effective in 
creating a large secondary motion, with gravity opposing the motion on one side of 
the film and supporting it on the other. The effects of gravity are greater when there 
is more liquid on the rod. For fixed volume of liquid, the effects of gravity are 
diminished when the viscosity is increased ; however, more liquid will remain on the 
rod at given’speed when the liquid is more viscous (cf. $4). The two effects compete. 
At  low speeds an equilibrium is established with a ‘lopsided’ configuration as in 
figure 4 ( b )  of Preziosi & Joseph (1988) which is steady in laboratory coordinates. 

As the speed of rotation is increased the out-of-roundness begins to increase and 
also to rotate relative to laboratory coordinates. This is a manifestation of 
bifurcation to a mode-one azimuthal variation, but it is slightly masked by out-of- 
roundness due to gravity (see figure 9). Such solutions are intrinsically unsteady. At  
the same time the crest of the waves grow and rings develop, in the manner shown 
in figure 10 and in figure 7 and 8 of Moffatt (1977). 

When the coating fluid is very viscous and the coating film is thin, the effects of 
gravity will be diminished, as shown in figure 10. Thin films can be created by 
centrifuging away excess fluid. If the speed of rotation is further increased, more 
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FIGURE 12. STP roller immersed in water, lubricated by water everywhere, poking its head into 
air. The shape of this roller is nodoid like (see figure 3). 

liquid will be flung off the rod. At very high speeds most of the fluid is thrown off the 
rod. Gravity has nothing to do with ‘throwing off’ because ejected particles of fluid 
are flung out radially. An equilibrium is reached in which there are pendant drops on 
a rotating rod. These are shown in figure 11. 

Pendant drops are a symmetry-breaking bifurcated solution of our coating film. 
They tend to form on the rings of earlier solutions with successive rows staggered so 
that the drops in one row lie in the interstice of the next row. This induces the 
diamond symmetry shown in the figures. The pendant drops are like those that might 
develop under gravity on a moist ceiling with an effective gravity equal to 52%. 

6. Rollers 
This section is partly an addendum to the two papers of Joseph et al. (1984, 1986) 

in which we try to explain what is observed there using what we have learned 
here. 

6.1. Rods coated with oil rotating in water: rollers and drops 
We shall discuss two fluid situations in which both fluids do not rotate rigidly. We 
are interested in situations in which oil coats the rod, and both the rod and the 
attached oil rotate in water. If the oil is sufficiently viscous, it will rotate with the 
rod as a rigid body. This rigid rotation was achieved in all our experiments with STP, 
lo00 and 6OOO P silicone oil. We have obtained, but do not give here, the boring data 
that show that the oil masses rotate rigidly. It is also of interest to consider cases in 
which the rigid rotating rod plus oil is immersed partly in water and partly in air, as 
in figure 12. The oil bodies that rotate as rigid wheels in fluids of smaller viscosity 
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FIGURE 13. Detachment of rollers from the sidewalls. The diameter and length of the Plexiglas 
cylinder are 5.7 cm and 10.8 cm respectively. The roller of silicone oil (loo0 P, p = 0.997) rotates 
in water. (a) B = 0.75 rad/s. The roller is attached to the sidewalls. (b) B = 1.19 rad/s. The speed 
is increased. The wavelength of the roller decreases as in a rotating drop and the roller detaches 
from the wall. The critical 52 for detachment is 1.14 rad/s. (c) B = 1.19 rad/s, but three days later, 
the minimizing solution appears t o  have the form required for a rotating drop. I n  fact, we get 
qualitative agreement between the theory given in $6.2 and the experiments if we imagine the 
roller to be a drop of density p (water) - p (oil) > 0. We call attention to the change in the contact 
angle with the position of the contact line. 

have been called rollers (see JNB). The dynamical problem posed by the experiments 
of Plateau (1863) in which olive-oil drops on a disk were rotated in an alcohol-water 
mixture also falls in this frame. 

We shall say that oil masses rotating rigidly in water are analogous to drops. This 
contradicts the static definition of a drop which is when the heavy fluid is inside 
(J < 0). Rollers and Plateau’s ‘drops’ have the light oil inside (J > 0). We call these 
‘static bubbles’ drops because they act like drops when they are rotated, the length 
A along the axis of rotation of these drops or rollers shortens and the maximum 
radius rz  increases as the angular velocity 52 is increased. We have not reconciled the 
obvious difference between the static and dynamic definitions of a drop. 

It is necessary to say that the cases under discussion here differ from those in $5 
in that the water is confined to a stationary box and the water does not rotate rigidly, 
though the oil does. 

Plateau (1863) reports that he observed an unstable toroidal figure of equilibrium, 
stable for a time, when he increased the rate of rotation of the disk driving the oil 
drop in the density-matched bath of alcohol and water. The sequence seen by him is 
like that shown in figure 3(b, c), a solution of nodoid type valid for rotating 
drops. 

In  figure 12 we show fat rollers of STP rotating rigidly, lubricated everywhere by 
water, immersed in water at the bottom and with their tops poking into air. Gravity 
enters into the dynamics of these rollers ; the water pushes up on the bottom and the 
air pulls down with a much bigger pull at the top. These gravity effects are 
stabilizing, tending to stabilize otherwise unstable toroidal drops of equilibrium. 
Figure 14 of JNB is another even better example of a nodoid-type solution of toroidal 
shape modified by gravity. 
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FIQURE 14. Bifurcated configurations of silicone oil in water. Only the one-lobed figure is stable in 
our experiments; the other figures eventually degenerate into a single lobe. This is consistent with 
predictions given by Brown & Scriven (1980) for a related problem. The one- and two-lobed 
structures resemble figures 4 and 8 sketched in the work of Plateau (1863). (a) One lobe, Sa = 0.47 
rad/e; (b)  two lobes, B = 0.83 rad/s; (c) three lobes, 0 = 1.49 rad/s; (d) six lobes, Sa = 3.18 
rad/s. 

Photographs of interpenetrating rollers immersed partly in water and partly in air 
have been exhibited in JNB. The dynamics of these rollers are partly explained by 
drop dynamics. The first dramatic dynamic event in the formation of inter- 
penetrating rollers is that a sheet of water fingers through the STP joining the two 
rotating cylinders, splitting the STP into more or less thick cylindrical films, each on 
its own cylinder. These films develop the same type of undulations as are 
characteristic for films rotating in air. The undulations grow in the manner 
consistent with rotating drops. However their growth is blocked by the presence of 
the second cylinder and they form square rollers which are consistent with 
minimizing a drop potential subject to a unilateral constraint. 

6.2. Sidewall detachment of single rollers 
Sidewall detachment of single rollers was described by JNB and by JRRN. An 
attempt to describe underlying dynamics was made by JRRN, who say that the 
most interesting feature of the dynamics leading to the formation of rollers is the 
fracturing of the viscous liquid a t  some critical level of the stress. In this process the 
roller breaks away from the sidewall and relieves the high stress associated with no 
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slip at the sidewall. So in the final, stable dynamics, rollers are lubricated by water 
and air on all sides. The rollers rotate nearly as rigid bodies because they are so 
viscous. The stability of rollers, as our analysis suggests, depends on the fact that the 
density stratification is such as to prevent the centrifuging of the roller. 

Several major points in the foregoing analysis must be revised in the light of our 
work here. The first revision does away with the notion of a critical stress. The 
sidewall detachment takes place as a kind of instability associated with a critical 
angular velocity. Photographs of this instability are exhibited as figure 15 of JNB 
(1984). 

We now want to explain sidewall detachment in terms of drop dynamics. The roller 
will attach to the sidewall at  all values of 52 below a critical one for which the length 
of the drop with contact at r = a is equal to the distance between the sidewalls. For 
larger values of 52 this length is less than the distance between sidewalls. This line of 
thought appears to explain qualitatively all of our observations of sidewall 
detachment (see figure 13). The foregoing explanation can be made quantitative 
under the hypothesis that the oil roller completely immersed in water is the same as 
a roller with an effective density equal to the density of water minus the density of 
oil, like a light drop rotating in air without gravity. We have not been able to justify 
this hypothesis mathematically, but it is consistent with the measurements reported 
in the caption of figure 13. 

We close this discussion of oil masses rotating in water with some remarks about 
bifurcation. Again it is necessary to revise JRRN in which it was said, ‘This 
instability [to non-axisymmetric disturbances] is associated with viscous shearing, 
which becomes important at  higher speeds and with a possible unstable distribution 
of angular momentum ’. We want to de-emphasize the effects of viscous shearing and 
to emphasize the intrinsic instability. The arguments given in 55.3 apply here. In 
general we get bifurcated sequences in the order of increasing azimuthal periodicity, 
fist n = 1 as in figure 14(a), then n = 2 as in figure 14(b). Some higher values of n 
are shown in figure 14 (c, d). The viscous shearing is very important for the bifurcated 
structures shown in figure 14(c), but it is not the cause of the bifurcation. Our 
observations of bifurcating sequences reproduced the sketches shown in figures 4-8 
of the celebrated treatise of Plateau (1863) and in photographs by Wang et al. (1981). 
The same sort of phenomenon, bifurcation of rotating drops into non-axisymmetric 
shapes in qualitative agreement with theory, although the theory does not 
acknowledge the outer fluid, was reported by Wang et al. (1981). 

We wish to thank Robert Gulliver for his advice about how to solve the 
minimization problem. This work was supported by the National Science 
Foundation, Fluid Mechanics, and the US Army, Mathematics. Computer results 
were obtained under a grant from the Academic Computing Services and Systems of 
the University of Minnesota. 

This paper is dedicated to James Serrin for his 60th birthday. 
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